Roll No \qquad

F-3610

B.Sc. (Part - I) Examination, 2022
 (New Course)
 MATHEMATICS
 PAPER THIRD

(Vector Analysis and Geometry)

Time : Three Hours]
[Maximum Marks:50

नोट : सभी प्रश्न अनिवार्य है। प्रत्येक प्रश्न से कोई दो भाग हल कीजिए। सभी प्रश्नों के अंक समान हैं।

Note : All questions are compulsory. Solve any two parts of each question. All questions carry equal marks.

इकाई-1/Unit-1

1. (अ) सिद्ध कीजिए कि चार बिन्दु $4 i+5 j+k,-(j+k), 3 i+9 j$
$+4 \mathrm{k})$ और $4(-\mathrm{i}+\mathrm{j}+\mathrm{k})$ समतलीय हैं।
Show that the four points $4 i+5 j+k,-(j+k), 3 i+$ $9 \mathrm{j}+4 \mathrm{k})$ and $4(-\mathrm{i}+\mathrm{j}+\mathrm{k})$ are coplanar.
(ब) यदि $a=\sin \theta i+\cos \theta j+\theta k, b=\cos \theta i-\sin \theta j-3 k$;
$c=2 i+3 j-k$ हो, तो $\theta=0$ पर $\frac{d}{d \theta}[a \times(b \times c)]$ ज्ञात
कीजिए।
If $a=\sin \theta i+\cos \theta j+\theta k, \quad b=\cos \theta i-\sin \theta j-3 k ;$
$c=2 i+3 j-k$, find $\frac{d}{d \theta}[a \times(b \times c)]$ at $\theta=0$
(स) दर्शाइए कि $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$.
Show that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$.

$$
\text { इकाई - } 2 \text { / Unit - } 2
$$

2. (अ) यदि $a(t)=t i-t^{2} j+(t-1) k$ तथा $b(t)=2 t^{2} i+6 t k$ तो दर्शाइए कि

$$
\int_{0}^{1} a \times b d t=-\frac{3}{2} i-\frac{13}{6} j+\frac{2}{5} k .
$$

If $a(t)=t i-t^{2} j+(t-1) k$ and $b(t)=2 t^{2} i+6 t k$, then show that

$$
\int_{0}^{1} a \times b d t=-\frac{3}{2} i-\frac{13}{6} j+\frac{2}{5} k
$$

(ब) स्टोक्स प्रमेय का सत्यापन कीजिए। जब फलन $F=x^{2} i+x y j$ का समाकलन उस $x y$ समतल में वर्ग के परितः किया जाता है, जिसकी भुजाएं रेखाओं $x=0, y=0$, $x=a, y=a$ के अनुदिश हैं।

Verify stoke's theorem for the function $F=x^{2} i+x y j$ integrated round the square in $x y$ plane whose sides are along the lines $x=0, y=0, x=a, y=a$.
(स) समतल में ग्रीन के प्रमेय का सत्यापन
$I=\Phi_{c}[(x+2 y) d x+(y+3 x) d y]$
के लिए कीजिए, जहाँ c वृत्त $x^{2}+y^{2}=1$ है।
Use Green's theorem in plane to evaluate $I=\Phi_{c}[(x+2 y) d x+(y+3 x) d y]$
where C is the circle $x^{2}+y^{2}=1$.

इकाई - 3 / Unit - 3

3. (अ) शांकव का अनुरेखण कीजिए

$$
x^{2}-3 x y+y^{2}+10 x-10 y+21=0
$$

Trace the conic

$$
x^{2}-3 x y+y^{2}+10 x-10 y+21=0
$$

(ब) यदि $P S P^{\prime}$ शांकव $\frac{l}{r}=1+e \cos \theta$ की एक नाभिगत जीवा है जिसकी नाभि S है।

दर्शाइए कि

$$
\frac{1}{S P}+\frac{1}{S P^{\prime}}=\frac{2}{l}
$$

If $P S P^{\prime}$ is the focal chord of a conic $\frac{l}{r}=1+e \cos \theta$ whose focus is S,
then show that

$$
\frac{1}{S P}+\frac{1}{S P^{\prime}}=\frac{2}{l}
$$

(स) त्रिज्याओं r_{1} और r_{2} को दो गोले लाम्बिक प्रतिच्छेद करते हैं। सिद्ध कीजिए कि उभयनिष्ठ वृत्त की त्रिज्या $\frac{r_{1} r_{2}}{\sqrt{r_{1}^{2}+r_{2}^{2}}}$ है।

Two spheres of radii r_{1} and r_{2} intersect orthogonally. Prove that the radius of the common circle
is $\frac{r_{1} r_{2}}{\sqrt{r_{1}^{2}+r_{2}^{2}}}$

इकाई-4/Unit-4

4. (अ) सिद्ध कीजिए कि शंकु $a x^{2}+b y^{2}+c z^{2}=0$ तथा $\left(\frac{x^{2}}{a}\right)+\left(\frac{y^{2}}{b}\right)+\left(\frac{z^{2}}{c}\right)=0$ परस्पर व्युत्क्रम है।

Show that the cones $a x^{2}+b y^{2}+c z^{2}=0$ and $\left(\frac{x^{2}}{a}\right)+\left(\frac{y^{2}}{b}\right)+\left(\frac{z^{2}}{c}\right)=0$ are mutually reciprocal.
(ब) उस बेलन का समीकरण ज्ञात कीजिए जिसकी जनक रेखा $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ के समान्तर है। तथा जो वक्र $x^{2}+y^{2}=16, z=0$ से गुजरता है।

Find the equation of the cylinder whose generators are parallel to the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and passing through the curve $x^{2}+y^{2}=16 ; z=0$.
(स) प्रतिबन्ध ज्ञात करो जबकि समतल $l x+m y+n z=p$ परवलयज $a x^{2}+b y^{2}=2 c z$ को स्पर्श करता है।

To find the condition that plane $l x+m y+n z=p$ may touch the paraboloid $a x^{2}+b y^{2}=2 c z$

इकाई - 5 / Unit - 5

5. (अ) अतिपरवलयज $\frac{x^{2}}{1}+\frac{y^{2}}{4}-\frac{z^{2}}{9}=1$ के बिन्दु ($1,2,-3$) से होकर जाने वाले जनकों के समीकरण ज्ञात कीजिए। Find the equation of generating lines of the hyperboloid $\frac{x^{2}}{1}+\frac{y^{2}}{4}-\frac{z^{2}}{9}=1$ which pass through the point $(1,2,-3)$.
(ब) सिद्ध कीजिए कि दीर्घवृत्तज $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ के स्पर्शतल पर, जो इसे संनाभि जिसका प्रावल λ है, के साथ प्रतिच्छेद वक्र के अनुदिश स्पर्श करता है, मूल बिन्दु से डाले गये लम्ब शंकु

$$
\frac{a^{2} x^{2}}{a^{2}-\lambda}+\frac{b^{2} y^{2}}{b^{2}-\lambda}+\frac{c^{2} z^{2}}{c^{2}-\lambda}=0
$$

पर स्थित है।
Prove that the perpendiculars from the origin to the tangent planes to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ which touch it along its curve of intersection with the confocal whose parameter is λ, lie on the cone.

$$
\frac{a^{2} x^{2}}{a^{2}-\lambda}+\frac{b^{2} y^{2}}{b^{2}-\lambda}+\frac{c^{2} z^{2}}{c^{2}-\lambda}=0
$$

(स) दर्शाइए कि समीकरण
$2 x^{2}+2 y^{2}+z^{2}+2 y z-2 z x-4 x y+x+y=0 \quad$ एव परवलयज को निरूपित करता है। समानीत समीकरण शीर्ष का निर्देशांक और अक्षों के समीकरण ज्ञात कीजिए।

Show that the equation
$2 x^{2}+2 y^{2}+z^{2}+2 y z-2 z x-4 x y+x+y=0 \quad$ represents a paraboloid. Find the reduced equation, the co-ordinates of the vertex and equations to the axes.

